
SKIR
ON

SKIRON

The Weather Forecasting System
SKIRON

Volume IV

PARALLELIZATION OF THE MODEL

Athens

June 1998

SKIR
ON

SKIRON

The Weather Forecasting System SKIRON

Volume IV

PARALLELIZATION OF THE MODEL

by

N.M. Missirlis, L.A. Boukas and N.Th. Mimikou

Department of Informatics, Section of Theoretical Informatics, University of
Athens

Athens

June 1998

SKIR
ON

About this documentation

The SKIRON documentation consists of six volumes namely :

Vol. I Preprocessing

Vol. II Description of the model

Vol. III Numerical methods

Vol. IV Parallelization of the model

Vol. V Postprocessing and graphics

Vol. VI Installation - Operation guides

Copies of these volumes are available from Dr. G. Kallos, Univercity of Athens,

Department of Applied Physics, Panepistimioupolis Bldg PHYS-5, 17584

Athens, Greece, email: Kallos@etesian.dap.uoa.gr

ISBN No.

SET : 960-8468-14-0

VOL IV : 960-8468-18-3

SKIR
ON

Acknowledgments

This work has been performed at the framework of the SKIRON project (EPET

#322) which has been founded by the Greek Government (through the General

Secretariat of Science and Technology) and European Union.

The scope of the SKIRON project was to develop a regional weather forecasting

system on parallel computer platforms.

For the purpose of this project, a consortium has been established between the

University of Athens (Dept. of Applied Physics and Dept. of Informatics), the

Hellenic National Meteorological Service, the Brainware S.A., the Athens High

Performance Computer Laboratory and the Innovative Technologies Center S.A.

Coordinator of the project was Dr. G. Kallos of the University of Athens.

We would like to thank all the colleagues and institutions for their help and

support in preparing this documentation. Especially, we would like to thank

Z.I.Janjic, F. Mesinger and T.Black for comments and suggestions. Thanks to the

scientists of the Hydrometeorological Institute for their assistance. Special thanks

to the members of the Atmospheric Modeling Group of the University of Athens,

S. Nickovic, A. Papadopoulos, V.Kotroni, K. Lagouvardos, D. Jovic, O.

Kakaliagou, M. Varinou, P. Katsafados, V. Kojanic and D. Nickovic for their

suggestions, corrections and proof writing. Also, special thanks to the members

of the Parallel Scientific Computing Group of the Department of Informatics,

Univercity of Athens, Y. Kotronis, G. Kounias, N. Argyropoulos, F. Tjaferis, K.

Moutselos, D. Nikolaidis and to D. Dimitrelos of the Athens High Performance

Computer Laboratory, for their help to the Volume IV.

Acknowledgment is made to the US National Center for Atmospheric Research

(NCAR) which is sponsored by the National Science Foundation for making

available to use the Convex SPP2000 machine.

SKIR
ON

VOLUME IV

TABLE OF CONTENTS

1.The SPP-1600 parallel computer.. 1

1.1.Introduction .. 1

1.2.Architecture of the SPP-1600 .. 1

1.3.Subcomplexes.. 2

1.4.SPP Features ... 2

2.Parallel programming models .. 3

2.1.Introduction .. 3

2.2.Message Passing.. 4

3.The PVM (Parallel Virtual Machine) programming environment 6

3.1 History of PVM... 6

3.2.PVM/GSM (Parallel Virtual Machine for Globally Shared Memory) 7

3.3.Capabilities.. 7

3.4.PVM Applications .. 8

4.The MPI (Message Passing Interface) programming environment 9

4.1.History of MPI .. 9

4.2.MPICH/GSM (Message Passing Interface for Globally Shared

Memory) ... 9

4.3.Capabilities.. 10

5.The Eta model .. 11

5.1.Parallelization of the Eta model .. 12

5.1.1.Domain Decomposition... 13

SKIR
ON

5.2.Parallel Implementation .. 18

5.2.1.The parallelization principles and techniques................................ 18

5.2.2.Determination of kernel and Halo points 20

5.2.3.Communication ... 24

5.2.4.Output Data Acquisition .. 29

5.3.Numerical Results... 30

6.Introduction to the parallel code .. 35

6.1.Creation of the input files .. 35

6.2.Creation of the input files relative to the boundary conditions 36

6.3.Storage of significant values .. 38

6.4.Initialization of the parallel program... 39

6.5.Creation of the two dimensional mesh topology.................................. 40

6.6.Termination of the parallel program.. 41

6.7.Local communication ... 41

6.8.Global Communication.. 44

6.9.Mixed communication.. 46

6.10.Creation of output files .. 47

6.11.Time measurements.. 49

7.Implementing communication using PVM.. 50

7.1.init_par .. 50

7.2.make_topo ... 51

7.3.Exchange ... 52

7.4.Sum_all .. 54

7.5.Max_Nclds... 56

7.6.Exit_par... 58

8.Implementing communication using MPI ... 59

8.1.init_par .. 59

8.2.make_topo ... 60

SKIR
ON

8.3.Exchange ... 60

8.4.Sum_all .. 62

8.5.Max_Nclds... 63

8.6.exit_par.. 65

9.The Parsytec CC-8 parallel computer.. 66

9.1.Architecture of the Parsytec-CC... 66

9.1.1.Partitions.. 66

9.1.2.Virtual processors ... 68

9.2.The EPX operating system (Embedded Parix) 69

9.2.1.Capabilities .. 69

9.2.2.Message Passing .. 70

9.2.3.PowerPVM/EPX.. 71

9.2.4.EPX features.. 71

9.3.Parallel Implementation of the Eta code .. 72

9.3.1.Global Communication... 72

9.3.2.Mixed Communication ... 76

9.4.Implementing communication using Parix .. 78

9.5.Numerical Results... 81

Appendix 4-1 Execution instructions for the parallel Eta code on the

Convex SPP 1600 platform with PVM and MPI......................... 84

Appendix 4-2 Results of the parallel Eta code on the Convex SPP-600

platform with PVM and MPI ... 88

Appendix 4-3 Results of the parallel Eta code on the Convex SPP-2000

platform with MPI .. 95

Appendix 4-4 Results of the parallel Eta code on the Parsytec CC-8 platform

with Parix and PVM .. 102

References.. 109

SKIR
ON

1

1.The SPP-1600 parallel computer

1.1.Introduction

The SPP1600 Convex parallel system belongs to the Exemplar systems class.

Exemplar systems implement the massively parallel processing (MPP) by using

scalable parallel processing (SPP) technology.

1.2.Architecture of the SPP-1600

An Exemplar system is a NUMA (Non Uniform Memory Access) architecture

system, which can be thought of as a shared memory computer with two levels of

memory latency. Memory available on the current hypernode constitutes the first

level, and all other memory constitutes the second.

The SPP1600 system consists of a hypernode containing 8 HP PA-RISC 7100

processors. The hypernode contains four CPU blocks. Each CPU block consists of

the following :

� Two PA-RISC processors.

� An associated data and instruction cache

� A CPU-private memory.

� Convex Toroidal Interface (CTI).

Each hypernode also contains one or more hypernode-private memories that can be

accessed by any CPU within the hypernode, and one or more global memory

blocks. The SPP1600 architecture uses two data caches. One 1st level 1-Mbyte on-

chip and one 2nd level 2-Mbyte off-chip.

SKIR
ON

2

1.3.Subcomplexes

In the Exemplar systems the processes are executed in virtual machines which are

called subcomplexes and are arbitrary choices of processors and shared memory.

A subcomplex may consist of only one processor or of all the processors installed

in the machine.

1.4.SPP Features

There are many features that were taken into account while designing the SPP

architecture. Some of them are:

� Ease of use.

� High performance in fixed and floating point computations.

� Scalability.

� Exploitation of all available resources for problem solving.

� Reliability.

SKIR
ON

3

2.Parallel programming models

2.1.Introduction

During the last years two important evolutions took place in the scientific

computing area. The first one concerns the development of massively parallel

systems that can provide the computing power necessary for the solution of large

problems. However, as the development of software did not keep up with the

innovations in hardware, the need for the creation of new programming languages,

new methods of design and new algorithms arose.

The second evolution relevant to the solution of scientific computing is the

distributed processing, since the demands for large amount of calculations lead to

the abandonment of the sequential machine and towards the distributed

computation units linked together through a high speed network.

Distributed computing offers many advantages, such as:

� Low cost due to the utilization of already existing hardware.

� Improved performance.

� Fault tolerance

For the full exploitation of heterogeneous computer systems, various software

packages have been developed. Among them are Express, P4, Linda, PVM, MPI,

whose differences lie in the programming model used for their design, and in

their performance.

SKIR
ON

4

2.2.Message Passing

In the process of message passing, the following two cases appear:

MPMD (Multiple Program - Multiple Data) , where a set of computational

worker processes perform work for one or more manager process. This approach is

used when synchronization is required between worker processes.

SPMD (Single Program - Multiple Data), where the program spawns several

identical processes that perform the same work independently on different data sets.

In this approach, synchronization is often required between processes.

In general, message passing offers the opportunity of creating portable parallel

programs. An application that uses message passing consists of several concurrent

tasks each with its own data, using messages to communicate with one another.

The structure of the parallel program and the method of data distribution are

explicitly handled by the programmer, while the communication and the

synchronization of the processes are achieved through message passing.

In the Exemplar systems, the programs that make use of message passing achieve

the minimum overhead in process synchronization and data distribution due to the

existence of low-latency interconnects.

Additionally, Exemplar systems are especially suited to the SPMD approach –

which is used for the parallelisation of the weather prediction code because of their

fast shared-memory communication, which minimizes synchronization delays.

The SPP architecture supports message passing from one thread within a process to

another within the same or a different process. Messages are sent using dedicated

hardware and shared memory copying. The messaging mechanism includes:

SKIR
ON

5

Messaging memory buffers

Messages are constructed in send-message buffers and transferred to receive-

message buffers. All message buffers are 64-bytes long. Each processor in the

hypernode has 8 buffers for sending messages.

Constructing a message in a send-message buffer

The message is constructed within the processor cache using store instructions,

then flushed to memory when the message is complete.

Sending a message

The send-message mechanism is implemented by preconditioning the CPU agent to

intercept a flush data cache instruction, FDC (Flush data cache) and force a

different operation to be performed. The address specified by the FDC instruction

is used as the message destination address.

Receiving a message

A message destination address is associated with each processor. Each message

destination address has a message-receive queue, as well as two hardware registers

used to manage the reading and writing in the queue.

Receiving the message interrupt

Part of the process of message receiving is the generation of an interrupt in the

processor owning the receive-message queue. The interrupt is issued after the

incoming data has been stored in the buffer and the queue write register has been

incremented.

SKIR
ON

6

3.The PVM (Parallel Virtual Machine) programming
environment

3.1.History of PVM

The development of the PVM programming environment began in the summer of

1989 at the Oak Ridge National Laboratory, by Vaidy Sunderam and Al Geist. The

original edition (PVM 1.0) was initially used in limited applications inside the

laboratory, and it was only after 1991 (PVM 2.0) that PVM started to be widely

used in the area of scientific applications.

PVM is a software system that permits the programs of the users to refer to a

heterogeneous collection of linked computers, in the same way they would refer to

a virtual parallel computer. In this way, the parallel applications enjoy hardware

independence (portability), similar execution environment and full exploitation of

the existing computing resources.

PVM includes a series of routines that handle the user applications through

message passing procedures. The user writes his application as a collection of

cooperating tasks which access the PVM resources through a library of standard

interface routines, in order to be initiated, synchronized, or to exchange messages

and terminate successfully in the contexts of the execution of a parallel program.

More specifically, any task in existence at any point in the execution of a

concurrent application may start or stop other tasks or add or delete computers from

the virtual machine. Any process may communicate and/or synchronize with any

other. All the applications of the users as well as the control procedures of PVM are

supervised by a special process called daemon.

SKIR
ON

7

3.2.PVM/GSM (Parallel Virtual Machine for Globally Shared Memory)

The PVM/GSM message-passing library is a PVM implementation that is finely

tuned for running on Exemplar systems. Although PVM/GSM runs only on

Exemplar systems, it can work with other networked hosts-if those hosts are each

running a PVM daemon that is compatible with Oak Ridge National Lab’s version

3.3.10 of PVM.

3.3.Capabilities

The PVM programming model offers a variety of capabilities such as:

a) Process numbering

Every process task in a PVM program is represented by a distinct integer number

different from all other task numbers.

b) Process handling

PVM offers the capability to the users processes to change from normal processes

to PVM processes and then to return to their original state. There exist routines for

the addition and deletion of hosts from the virtual machine, for the communication

between PVM processes and for the collection of information concerning the

configuration of the virtual machine and the active PVM processes.

c) Error handling

In the case that a host has a problem, PVM automatically excludes it from the

virtual machine.

d) Dynamic Process Groups

A process may belong to one or more groups. Every group can change dynamically

at any time during the execution of a parallel program.

e) Signaling

Two modes of communication are provided between PVM processes.

SKIR
ON

8

f) Communication

PVM presumes that message exchange can take place between any two processes,

without any limitations concerning the message size.

PVM communication model has the capability for

� Asynchronous blocking send

� Asynchronous blocking receive

� non - blocking receive

ensuring that the order of the received messages will be the same as the one with

which they were sent.

g) Uniform execution environment

Different data encoding schemes are supplied, in order to handle data

communication between heterogeneous machines.

h) Support of programming languages (C, C++, Fortran 77)

3.4.PVM Applications

The applications which have been developed on PVM during the last years

encompass:

- Material Science

- Global Climate Modeling

- Atmospheric, oceanic, and space studies

- Meteorological forecasting

- 3-D groundwater modeling

- Weather modeling

- Superconductivity, molecular dynamics

- Monte Carlo CFD application

- 2-D and 3-D seismic imaging

- 3-D underground flow fields

- Particle simulation

- Distributed AVS flow visualization

SKIR
ON

9

4.The MPI (Message Passing Interface) programming
environment

4.1. History of MPI

MPI (Message Passing Interface) was developed with the aim of becoming a

widely used standard for the message passing parallel programming. So, it ought to

be practical, portable, efficient and easy to use.

The MPIF (Message Passing Interface Forum) was created in 1993, with the

participation of more than 40 organizations. From January 1993 until June 1994, a

set of standards of message passing libraries was defined. In June 1995 MPIF

created a second manual of MPI (1.1 edition) in which it corrected the errors of the

previous, in an effort which started in January 1995.

Immediately after the defining of the basic library subroutines of MPI, many

implementations for these libraries were made available, from (super) computer

manufacturing companies targeting specific models, as well as public domain

editions, referring to a huge variety of different computers. The most well known

public domain edition for MPI is MPICH that was developed by the Argonne

National Laboratories.

4.2. MPICH/GSM (Message Passing Interface for Globally Shared Memory)

The Convex Mpich is a high performance implementation of the 1.1 edition of MPI

that has been developed for use in Exemplar systems. It is based upon the

ANL/MPICH (Argonne National Lab's Mpich) implementation of MPI and offers

improved capacity for message passing in the Exemplar globally shared memory

architectures (GSM).

SKIR
ON

10

As a programming platform for message passing, MPI assures one of the most

important aims for an application: Portability. The former is proved by the fact that

MPI has been implemented and is available for virtually all (super) computer types,

as well as for clusters of workstations.

4.3. Capabilities

The MPI programming model offers a variety of capabilities such as:

-Point-to-point communication.

-Blocking-NonBlocking communication.

-Synchronous or Asynchronous communication.

-Buffered or NonBuffered communication.

-Collective Communication

-Barriers

-Broadcast

-Gather-Scatter.

-Global Reduction functions

-Group Communication

-Group handling

-Communicator handling

-Process topologies.

-Virtual topologies.

-Topology constructors.

-Environmental and error handling.

-Profiling Interface

SKIR
ON

11

5.The Eta model

The Eta model has been developed at the US National Center for Environment

Prediction (NCEP) based on a prior “minimum physics” version of the code

written and tested at the Federal Hydrometeorological Institute and Belgrade

University and at the Geophysical Fluid Dynamics Laboratory of Princeton

University. It is the current-generation mesoscale Numerical Weather Prediction

model running in production at NCEP for forecasts longer than 12 hours

(Henderson et al., 1995). For further references see (Kallos, 1997) and citations

herein. The numerical and physical parameterization schemes of the Eta model

have been described in Janjic (Janjic, 1979, 1984, 1990, 1994), (Janjic and

Mesinger, 1984) and Mesinger (Mesinger, 1973, 1976, 1984, 1997) (Mesinger

and Arakawa, 1976), (Mesinger et al., 1988). In short the Eta model uses

� the Eta vertical coordinate (Mesinger, 1984)

which permits step-like representation of

mountains and quasi-horizontal coordinate

surfaces.

� an Arakawa E grid and

� the Janjic (Janjic, 1984) horizontal advection

scheme which imposes a strict control on false

energy cascade (e.g. (Janjic and Mesinger,

1984)).

Eta was originally developed and optimized for vector-based architectures such

as the Cray C90. Recently, the code was transformed into the two dimensional

version in order to be suitable for parallelization on MIMD machines. In this

paper we present the parallel implementation of the Eta model for distributed

memory processors when their network is a mesh. The computation and

communication analysis for a rectangular domain decomposition reveals that the

SKIR
ON

12

computation domain of each processor must be a square in order to achieve linear

speedup and constant efficiency. The Parallel Virtual Machine (PVM), the

Message Passing Interface (MPI), and the Parallel Extension to UNIX (PARIX)

message passing libraries were used for the required communication. Finally, we

present our results on a Parsytec CC-8 machine, using PVM and PARIX, and on

a Convex Exemplar SPP-1600 machine with 8 nodes, using PVM and MPI.

5.1. Parallelization of the Eta model

In this section, we describe how to implement the Eta model on a message

passing parallel computer. The most common techniques to introduce parallelism

in atmospheric models is domain decomposition. The basic idea is to decompose

the original domain into subdomains and assign each subdomain to a different

processor. To keep the computations consistent with the sequential code inter-

processor communication is usually needed.

The Eta model is organized into two major packages: dynamics and physics. The

first solves the basic model equations while the second describes the effect of the

physical processes. For the numerical computation of the dynamics, explicit

schemes are used as they are ideally suited for parallel computation since they do

not require the numerical solution of linear systems. The main advantage of the

explicit schemes is that they require only local communication in contrast to the

implicit schemes where global communication is needed. The disadvantage is

that they must satisfy time-step constraints like the CFL condition. Regarding the

physics, the computation for each grid point requires information from an entire

column (radiative process) and to avoid communication it is important to keep

such data local. Moreover, short-wave radiation can create load imbalances when

a diurnal cycle is simulated as it depends on the location of the sun and on the

cloud distribution. Thus, all grid columns can be considered to be independent of

each other, allowing for a simple data decomposition. The model also contains a

semi-Langrangian advection scheme (Ritchie, 1995). However, the technique

requires access to data from nearby grid columns, since it is necessary to compute

SKIR
ON

13

the trajectory of a parcel of air. Therefore, a degree of local communication is

introduced.

5.1.1.Domain Decomposition

A spatial domain can be decomposed in a number of different ways. However,

for simplicity of algorithm implementation, the domain is usually divided into

subdomains with simple and regular geometries. Next, by considering a mesh

network topology for our processors, each subdomain is allocated to a processor.

This mapping is crucial because it affects the communication, the degree of

parallelism and the load balance among the processors. The ideal situation is the

minimization of the ratio communication to computation time and a uniform

work load across the processors throughout the execution of the algorithm.

Taking into consideration the fact that the computations are implicit in the

vertical direction, only the horizontal domain is decomposed. Let us consider the

decomposition where the NN � domain of grid points is partitioned into p/q

horizontal strips and each strip is again partitioned into q rectangles of equal size

(Fig. 5.1.1.1(a)). Each of these rectangles has N/p points (Fig 5.1.1.1(b)).

SKIR
ON

14

Figure 5.1.1.1: Domain decomposition and mapping to processors Pi, 1 � i �

p.

Figure 5.1.1.2: Stencil for the horizontal discretization

SKIR
ON

15

Figure 5.1.1.3: Stencil for the horizontal discretization

In every grid point the stencil shown in Fig. 5.1.1.2 for the horizontal

discretization is applied (Ortega, 1988). Because of the structure of the

computational stencil, processors have to communicate their boundary points to

the four neighbouring processors after each scan of the domain. Therefore, each

processor contains all the grid points corresponding to its domain, as well as

those grid points which form its artificial boundary (in our case two

rows/columns in each side). The communication pattern is shown in Fig. 5.1.1.3

and is carried out concurrently in all processors. To avoid communication

between diagonal processors which contain only a common corner, the

communication is carried out in two phases. In the first phase the column

boundaries are exchanged with the left and right neighbour and in the second

phase the row boundaries are exchanged with the upper and lower neighbour.

Note, that the aforementioned phases may be performed in any order. The

computational complexity, for each scan of the domain is analogous to the

number of grid points in the rectangle (area) assigned to each processor Pi,

namely

,t
P

N
)P(t cicomp � (5.1.1.1)

SKIR
ON

16

where tc is a machine dependent constant and is the constant amount of

computation time per grid point. Note that tcomp(Pi) is a decreasing function of the

number of processors p. On the other hand, the communication time is the time

required for each processor to communicate with its four neighbours. This time

involves the exchange of data of two rows and two columns with the neighbour

processors. The communication complexity, therefore, is analogous to the

number of grid points which lie on the two rows/columns perimeter of the

domain allocated to each processor, hence

, t
p

Nq

q

N
t22)P(t wsicomm

�
�
�

�

�
�
�

�

�
�
	

�
�
�

��� (5.1.1.2)

where ts is the constant communication start-up time, tw is a machine dependent

constant and is the constant amount of the per word transfer time. From (5.1.1.1)

and (5.1.1.2) it follows that we can determine the optimum value of q such that

the ratio communication to computation is minimized. We have

� �
� �

c

ws

pq1
icomp

icomm

pq1
t

p

N

t
p

Nq

q

N
t22

min
Pt
Pt

minr
�
�
�

�

�
�
�

�

�
�
	

�
�
�

��

��
����

� �� �

.
qNt

Nqptpqt22
min

c

2ws

pq1

��
�

��

 (5.1.1.3)

Letting 0
q

r
�

�

�
 we find pq

^

� which is the optimum value for q. Therefore, for

the considered decomposition, it is best to assign to each processor a square

block of grid side equal to
p

N
 (Boukas, Mimikou and Missirlis, 1997), (Kallos

et al., 1997) . For the optimum value of q the corresponding minimum value of

the ratio r is given by

.
N

p
t

N

p
t

t

4
r ws

c
�
�
	

�
�
�

�� (5.1.1.4)

SKIR
ON

17

From (5.1.1.4) we note the ratio r is composed of two terms and is governed by

the first term as long as the ratio ts/tw is larger than or equal to the side of the

square assigned to each processor, namely

.
p

N

t

t

w

s � (5.1.1.5)

In fact, the first term of (5.1.1.4) depends linearly on p which means that for large

number of processors, if (5.1.1.5) is satisfied, then r will behave as a linear

function of p. On the other hand, if (5.1.1.5) does not hold, then the second term

in (5.1.1.4) dominates in which case r is a very slowly increasing function of p.

In this case the ratio r is improved by an order of magnitude. In conclusion it is

best to choose N and p such that

.
p

N

t

t

w

s � (5.1.1.6)

From the above analysis it is easily derived that the parallel run time needed for

the computation of all the points in the domain is

.
p

N
t4t4

p

N
tT wscp ��� (5.1.1.7)

Under the assumption (5.1.1.6), the expressions for speedup and efficiency are as

follows:

N

p
t8t

pt

p

N
t8

p

N
t

Nt

T

T
S

wc

c

wc

c

p

1
p

�

�

�

��

and

.

N

p
t8t

t

p

S
E

wc

cp
p

�

�� (5.1.1.8)

From (5.1.1.8) we see that, for maintaining constant efficiency, N must be

proportional to p. However, efficiency and speedup depend on the hardware

constants tc and tw.

SKIR
ON

18

5.2. Parallel Implementation

In this section we present the principles, techniques and implementation details

of the parallelization of the meteorological code Eta.

5.2.1. The parallelization principles and techniques

We followed four basic design principles:

1. Retain the original sequential code, as much as possible, for a number of

reasons: the parallel code is recognisable by the sequential code

developers; a smaller development effort is required as modifications are

kept to a minimum; the parallel code performance may be directly

compared with the sequential code.

 We used the Single Program Multiple Data (SPMD) and the message-passing

paradigms: the original data domain is partitioned into sub-domains, which are

assigned to distinct processes, executing the same computations. The processes

are spawned from the same executable, the computations of which are the same

as the original sequential code, but parametrically restricted on data partitions.

When communication between processes is required, message-passing operations

are used. The results of individual processes are collected to form the output of

the parallel application.

2. Minimize communication between processes for improving speed-up

and efficiency.

 Communication is needed when local computations require data in neighbouring

partitions (halo points) and when computation of a value (e.g. maximum value in

an array row) requires a distributed algorithm. For the former, we first

determined the kernel and used overlapping of data partitions on halo points; we

kept a local copy of halo points and only when required, we exchanged data by

point-to-point bulk communication (complete rows or columns). For the latter,

we redesigned the code, using known efficient distributed algorithms.

SKIR
ON

19

3. Develop portable parallel code for maintaining a single code for any

execution environment. The execution environment depends on the

particular message-passing environment (MPEs) used (e.g. PVM, MPI,

Parix), as well as on the particular architecture (e.g. GC, CC, Exemplar).

 PVM, MPI and to a certain degree Parix provide a virtual view of the underlying

architectures, thus providing the necessary portability. We mainly had to deal

with differences of MPEs related with process management and message passing

operations. We developed high-level library procedures (e.g. Exchange row or

column) which wrap low-level routines specific to each MPE. Porting the parallel

code to a different MPE needs only relinking with the associated library.

4. Develop scalable code for the speed-up to be proportional to the number

of available processors.

We concentrated our efforts on two factors on which scalability depends. The

first was to keep the ratio of computations over communication constant. We

specify regular equal orthogonal partitions parametrically. By allocating smaller

data partitions to more processes, the computation load on each process

decreases; also the exchange communication decreases as the number of halo

points are fewer. Communication increases only when computing a value

requiring a distributed algorithm. The second factor was the mapping of the

virtual process topology on the architectures. As a data partition and the point-to-

point process communication, required for exchanging data, determines a virtual

grid process topology, we split data in as many partitions as processors available

and map the process topology onto the processors. When the physical processor

topology is important (e.g. in GC) we map logically neighbouring processes on

physically neighbouring processors minimising latency.

In the sequel we elaborate on implementation details.

SKIR
ON

20

5.2.2. Determination of kernel and Halo points

Due to the E-grid morphology we can not consider the array columns as unified

entities, but it is obligatory to view them as indivisible pairs of consecutive

columns. The same stands for the case of array rows. In an effort to maintain the

original philosophy of the model, the aforementioned constraint was satisfied in

the parallel version. For this reason, it is necessary not only to inforce a pair-wise

splitting of columns and rows, but also to ensure that the column kernel (row

kernel) of each processor will begin with an odd column number (odd row

number), and this first kernel column (first kernel row) will correspond to an odd

numbered column (row) of the original array.

SKIR
ON

21

A second constraint of the model is that the number of columns JM and the

number of rows IM of the mesh must be odd numbers. In this case, as well, the

parallel code follows the imposed condition by setting the number of columns

JML and the number of rows IML at each subdomain to be odd numbers.

Next, if we let p� q be a two-dimensional mesh of processors, and

��

�
��

�
�

2

JM
k j number of column pairs

(5.2.2.9)

��

�
��

�
�

2

IM
ki number of row pairs,

then it is easy to see that

JM = 2 * kj + 1 and IM = 2 * ki + 1. (5.2.2.10)

Thus, each processor will hold

.pairs row
q
k and pairs column

p
k ij

�
�

�
�
�

�
�
�

�
�
�

�
 (5.2.2.11)

However,

1pr0 ,rp
p
k

k jj
j

j �		
��
�

�
�
�

�
�

and

1qr0 ,rq
q
kk ii

i
i �		
��

�

�
�
�

�
� (5.2.2.12)

That is, there is a surplus of rj column pairs and ri row pairs, which will

eventually be uniformly allocated to the processors. Hence, each processor will

hold

 ,
p
k

2JML j
j*

��

�
��
�

�

�

�

�
�
�

�
�� � �j � {0,1} (5.2.2.13)

consecutive columns and

SKIR
ON

22

 ,
q
k2IML i

i*
��

�
��
�

�

�

�

�
�
�

�
�� � �i � {0,1} (5.2.2.14)

consecutive rows of the original array.

So far, IML* and JML* represent kernel rows and kernel columns, respectively.

However, each processor is surcharged with halo points. Thus, the grid points

(kernel points and halo points) become

JML = JML* + haloleft + haloright

(5.2.2.15)

IML = IML * + halodown + haloup,

where haloleft, haloright is the number of left and right columns, respectively,

consisting of halo points, whereas halodown, haloup is the number of down and

upper rows, respectively, consisting of halo points. According to our

requirements halodown, haloup, haloleft, haloright must satisfy the following two

conditions :

1. halodown and haloleft must be even numbers, so that the first kernel row and the

first kernel column to become odd numbered.

2. Due to the fact that the number of kernel columns and the number of kernel

rows are even numbers (pair-wise splitting), halodown and haloleft are also even

numbers (due to the first constraint). To satisfy the second constraint (odd IML,

odd JML) it is necessary to add an odd number. Therefore, haloup and haloright

must be odd numbers in (5.2.2.15).

So far we have ignored the last column JM and the last row IM that can not form

pairs due to the non existence of the JM+1 column and the IM+1 row,

respectively, which is caused by the fact that JM and IM are defined to be odd

numbers. These additional elements are surcharged to those processors that hold

the JM-1 column and/or the IM-1 row. Such an addition, though, would result to

the transformation of JML and IML to even numbers for these processors, which

contradicts our constraint. For this reason we define for these processors

SKIR
ON

23

haloup = haloup-1

(5.2.2.16)

haloright = haloright - 1

so that JML, IML are odd numbers and are calculated from the same equation

(5.2.2.15) in this case as well. Now that we have defined the constraints imposed

on the halo points, we must combine the theoretical limitations with the actual

implementation demands, i.e. we must find the real number of halo-columns and

halo-rows that must be assigned to each processor. This is achieved with the

following procedure.

For each array B that is used in the model, we search for expressions of the form

 B(i-i_minus, �), B(i+i_plus, �)

B(�, j-j_minus), B(�, j+j_plus). (5.2.2.17)

Let

i_down = max(i_minus)

i_up = max(i_plus)

j_left = max(j_minus)

j_right = max(j_plus)

then, we have

halodown = i_down + mod(i_down, 2)

haloleft = j_left + mod(j_left, 2) (5.2.2.18)

while

haloup = i_up + mod(i_up+1, 2)

haloright = j_right + mod(j_right+1, 2) (5.2.2.19)

For the case of the parallel Eta model, the existence of additional limitations

caused mainly by the Horizontal Advection Scheme's decomposition, leaded to a

SKIR
ON

24

number of up, down, left and right halo-points of, 2 rows,3 rows,4 columns, and

3 columns, respectively.

5.2.3 Communication

The execution of the model begins with the creation of the two-dimensional mesh

topology for which the message passing procedures will take place. In the sequel,

each processor will communicate with its top, down, left and right adjacent

processor, named “upper”, “down”, “left” and “right”, respectively. Additionally,

because of the need to identify each processor, the processors are numbered from

0 to np-1, and are related to the coordinates of the position they hold on the two-

dimensional mesh topology.

For the purposes of message passing, a subroutine Exchange handles all the

steps involved in the communication. Each message is formed by internal

elements of the sending processor, then it is packed in a vector array, and is

finally transmitted to the receiving processor, which will unpack the message and

use it to update its halo points. According to which processor the messages will

be sent to, and considering the fact that there is an overlapping of message so as

to avoid communication with the diagonal processors, we have the following four

variants of the Send subroutine:

Send_up, Send_down, Send_left, Send_right

Similarly, according to the processor from which the message has been sent, we

have the following variants of the Receive subroutine:

Recv_down, Recv_up, Recv_right, Recv_left

Considering the fact that the proposed communication scheme consists of four

Send calls, that can be performed in pairs concurrently, and four blocking

Receive calls, the body of subroutine Exchange is either: call Send_up, call

Send_down, call Recv_down, call Recv_up, call Send_left, call Send_right, call

Recv_right, call Recv_left or call Send_left, call Send_right, call Recv_right, call

Recv_left, call Send_up, call Send_down, call Recv_down, call Recv_up with

additional two alternative forms.

SKIR
ON

25

Communication, expressed in calls of subroutine Exchange, is chosen to be

performed in the beginning of the subprogram that requires it, in order to avoid

repeated and unnecessary updating of the same halo points within loops. There

are only a few cases in the model where message passing is applied in an inner

code position, and are due to dependencies concerning temporary arrays only.

Moreover, communication is restricted to 2d and 3d arrays and is handled

differently by each processor, in the sense that the amount of halo points

exchanged by each processor depends on its position in the 2d-mesh, because

processors laying on the perimeter of the mesh have fewer “valid” halo points

than the internal ones. With the term “valid”, we refer to those halo points that

are essential for the execution, in contrast to the “dummy” halo points assigned to

the processors from the side that they lack a neighbour, for reasons of consistency

as well as security regarding pointer referencing.

Due to the previous considerations, calculations on an internal processor can

include or exclude halo points, while on an external processor are restricted on

kernel points only, for each side where no adjacent processor exists, because, an

updating of the halo points in that case would just be a non required

computational overload. On the contrary, the external processors can choose to

update halo points for all sides that a neighbour exists.

In addition, communication is not always necessary in order to update correctly

the halo points of a processor. Sometimes the nature of the local arrays helps

avoiding a time-consuming message exchange. For this reason, in order to decide

if communication is actually needed in a certain part of a program, we must first

study the characteristics of the arrays that are declared. For the parallel Eta

model, we have searched and categorized the local arrays as follows:

A local array is an

� Input array of a subprogram when it appears at least once in the right part

of an expression without the existence of an updating occurrence in a

previous statement of the same subprogram.

SKIR
ON

26

� Output array of a subprogram, when its values have been altered within

the same subprogram.

� Constant array when its values do not change in any subprogram.

� Updated array when its halo points have the correct values, due to

previous communication procedure or computations done on all the grid

points.

� Non-dependent when all its elements (kernel and halo points) can be

computed correctly by the same processor only with computations.

However, the halo points are only used to aid the computation of the kernel

points, and do not have to be always updated, unless doing so will help to avoid

communication. So, we have the following rules for applying interprocessor

communication.

CASE 1. A whole subprogram can be executed strictly on kernel points and

totally avoid communication if and only if

(a) all its input arrays are either Constant or Updated.

(b) the values of the halo-points are not needed to estimate the

kernel points at any part of the subprogram.

CASE 2. A subprogram is forced to communicate if and only if at least one of

its input arrays is not Updated and its halo points are needed for the

computation of other arrays's kernel points.

CASE 3. A part of a subprogram can be executed only on kernel points of a

processor if and only if the halo points of the Output arrays belonging

to this part are not needed in a latter part of the same subprogram.

CASE 4. A part of a subprogram (or possibly the whole subprogram) can be

executed for all the grid points (halo points and kernel points) of a

processor if and only if it is used to create updated output arrays in

order to help the next part or subprogram that will use them as input

to avoid communication.

For a better understanding of our previous considerations, we present the

following characteristic examples:

SKIR
ON

27

Example 1

Let us consider a sequential subroutine whose body is only the following for

reasons of simplicity.

DO 100 J=3, JM-2

DO 100 I=1, IM

A(I,J) = B(I,J) � c + A(I,J)

100 CONTINUE

The estimation of element A(I,J) depends only on the corresponding values of B

and A itself. Therefore, because of CASE 1(b) no communication is needed, and

the calculations can be restricted to the kernel points. Consequently, the

equivalent parallel form will be:

DO 100 J=j_kern_start_3, j_kern_end_JM_2

DO 100 I=i_kern_start_1, i_kern_end_IM

A(I,J) = B(I,J) � c + A(I,J)

100 CONTINUE

where

j_kern_start_3 is the third kernel column of the processor if it does not have a

left neighbour otherwise is the first kernel column

j_kern_end_JM_2 is the third from the end kernel column of the processor if it

doesn't have a right neighbour otherwise is last kernel column

i_kern_start_1 is the first kernel element of the processor's j'th column

i_kern_end_IM is the last kernel element of the processor's j'th column.

Example 2

Let us consider the following sequential part of code

SKIR
ON

28

DO 110 J=1, JM

DO 110 I=1, IM

A(I,J) = AETA(I) � B(I,J)

110 CONTINUE

DO 120 J=3, JM-2

DO 120 I=2, IM-1

C(I,J) = D(I,J) + B(I,J+1)/(A(I+IVW(J),J)+A(I+IVE(J),J))

120 CONTINUE

where

AETA is a vector with known elements, B is an Input array, IVE(J)=J modulo 2

and IVW(J)=IVE(J) - 1.

Let us suppose that B is not an Updated array. Then, we notice from loop “Do

120”, that the calculation of C(i,j) for some j, may depend on the values of A(i-1,

j), A(i+1, j), and B(i, j+1). These A, B elements, though, do not always belong to

the processor's kernel. This means, that in the calculations of loop “DO 120” we

need the correct values of each processor's halo points as well as the kernel

points. The values of A could be calculated in loop “Do 110” for the whole grid.

However, the value of A at each halo point depends on the corresponding value

of B, which is not previously computed, i.e. A is a Dependent array. It is obvious,

that the situation is the one described in CASE 2. Hence, we must get the correct

values of B via the message passing procedure. In doing so B will be converted

into an Updated array, and A into a Non-dependent array. Thus, after the

communication, CASE 2 leads to CASE 4 for loop “DO 110” and to CASE 3 for

loop “DO 120”. The parallel form is then the following:

CALL Exchange_2d(B)

DO 110 J=j_startg_1, j_endg_JM

DO 110 I=i_startg_1, i_endg_IM

A(I,J) = AETA � B(I,J)

SKIR
ON

29

110 CONTINUE

DO 120 J=j_kern_start_3, j_kern_end_JM_2

DO 120 I=i_kern_start_2, i_kern_end_IM_1

C(I,J) = D(I,J) + B(I,J+1)/(A(I+IVW(J),J)+A(I+IVE(J),J))

120 CONTINUE

where

Exchange_2d is the communication handler Exchange marked 2d because B is a

two dimensional array.

j_startg_1 is the first kernel column of the processor if it doesn't have a left

neighbour otherwise is the first grid column

j_endg_JM is the last kernel column of the processor if it doesn't have a right

neighbour otherwise is the last grid column

i_startg_1 is the first kernel element of the processor's j'th column if it doesn't

have a down neighbour otherwise is the first grid element

i_endg_IM is the last kernel element of the processor's j'th column if it doesn't

have an upper neighbour otherwise is the last grid element

5.2.4. Output Data Acquisition

During the execution of the sequential program, a special subroutine creates, in

predefined time periods, the output files of the meteorological model. Executing

the same subroutine in parallel results in acquiring a number of output files

analogous to the number of processors that participated. These files contain

subsets of what would normally be the output of the model. A set of programs,

using steps quite similar to the ones taken for data decomposition, act as a

postprocessing part, joining the output data of parallel Eta in files, such as to

produce the appropriate output.

5.3.Numerical Results

The aforementioned data partitioning and message passing techniques have been

successfully tested and validated in the shared memory platform Exemplar SPP-

1600. The programming models that were selected for the implementation are

SKIR
ON

30

PVM and MPI because they combine machine independence, portability and

compatibility.

Figures 5.3.4-5.3.7 represent our numerical results of the model as they were

estimated for a 48h run of 1920 steps on a 121�161�32 grid, with 4, 6 and 8

processors, respectively. Times are measured in seconds in all cases.

The reduction in time of the parallel code as compared to its sequential version is

significant (Fig. 5.3.4). The speedup is almost linear for all cases (Fig. 5.3.5)

except the PVM version, where there is a discrepancy for p>6. The efficiency of

all cases with exception again of the PVM version is above 0.8 (Fig. 5.3.5). Fig.

5.3.6 and 5.3.7 show the behaviour of the computation and communication time.

The reduction in communication time of MPI as compared to PVM is significant.

SKIR
ON

31

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8

S
ec

on
ds

Number of processors

Total time

SPP-1600-PVM
SPP-1600-MPI

Figure 5.3.4: Parallel run time

SKIR
ON

32

0

1

2

3

4

5

6

7

8

4 6 8

S
pe

ed
up

 S
p

Number of processors

SPP-1600-PVM
SPP-1600-MPI

0

0.2

0.4

0.6

0.8

1

1.2

4 6 8

E
ffi

ci
en

cy

Number of processors

SPP-1600-PVM
SPP-1600-MPI

Figure 5.3.5: Speedup-Efficiency

SKIR
ON

33

6000

8000

10000

12000

14000

16000

18000

20000

4 6 8

S
ec

on
ds

Number of processors

Computation

SPP-1600-PVM
SPP-1600-MPI

1000

1500

2000

2500

3000

3500

4000

4 6 8

S
ec

on
ds

Number of processors

Communication

SPP-1600-PVM
SPP-1600-MPI

Figure 5.3.6: Computation-Communication

SKIR
ON

34

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4 6 8

T
_c

om
m

/T
_c

om
p

Number of processors

Communication/Computation

SPP-1600-PVM
SPP-1600-MPI

Figure 5.3.7: Communication/Computation

SKIR
ON

35

6.Introduction to the parallel code

In this section we present the programs and subroutines that were used to

parallelize the meteorological code ETA for the SPP-1600 Convex machine, using

the PVM and the MPI programming environment.

6.1. Creation of the input files

Name subsplit.f

Description

The first step of a parallel program is to allocate the data to the available

processors. For the parallel meteorological code Eta this demand is satisfied by

using as a preprocessing part, a program called subsplit, that handles the data

mapping to the processors (not taking into account the input data relative to the

boundary conditions of the model).In particular, program subsplit reads the input

files of the sequential model and distributes their contents to smaller processor

dependent files that in a latter step will be used as input to the parallel code.

Consequently, a partitioning of data via program subsplit occurs each time is

needed to change the set of input data or the number of the participating processors.

Call

Program execution is accomplished with the command:

 Subsplit

and must precede the execution of the parallel program.

SKIR
ON

36

Parameters

In order to modify the dimensions of the processor mesh, parameters N_X_GRID

and N_Y_GRID must be updated with the new values in file parallel.h. In

particular, subsplit.f includes the following files:

split.h : defines parameters and variables relevant to the input data.

local.h : defines temporary variables used for the data mapping.

parallel.h : defines the relevant to the parallel program declarations, allowing

to

 modify the following values:

 N_X_GRID: number of processors in the horizontal axis

 N_Y_GRID: number of processors in the vertical axis

 NUM_PROCS = N_X_GRID x N_Y_GRID (number of

processors)

6.2. Creation of the input files relative to the boundary conditions

Name split_boco.f

Description

Program split_boco.f handles the data mapping to the processors, for those input

data files that correspond to the boundary conditions imposed on the execution of

the model. These data are stored in files created in predefined time periods from the

preprocessing part. Split_boco.f produces on arrival the files that will be read in a

latter step from the subroutine bocoh of the parallel program, without demanding

the completion of its execution prior to the execution of the parallel program. In

this way, the data are allocated to the processors as soon as the first file is made

availiable and the parallel program can start its execution. If a new input file is

created, then program split_boco.f will act independendly to the execution status.

SKIR
ON

37

Also, in case that the data mapping is not completed at a certain timestep, whereas

the parallel program has reached the point of reading the new boundary data, then it

will wait until split_boco.f terminates.

Call

Program execution is accomplished with the command:

 Sboco k

where k=1(1)TEND/TBOCO.

Parameters

Program split_boco.f includes the following files:

split.h : defines parameters and variables relevant to the input data.

local.h : defines temporary variables used for the data mapping.

parallel.h : defines the relevant to the parallel program declarations, allowing

to

 modify the following values:

 N_X_GRID: number of processors in the horizontal axis

 N_Y_GRID: number of processors in the vertical axis

 NUM_PROCS = N_X_GRID x N_Y_GRID (number of

processors)

SKIR
ON

38

6.3. Storage of significant values

Name save_values

Description

Subroutine save_values is called in order to store in a temporary file (save.dat) all

the parameters which will be needed in the post-processing part following the

execution of the parallel program, where the output files will be merged together

according to a proposed data composition technique (program submerge.f).

Call

Subroutine save_values is called at the end of subroutine INIT, with the command:

 call save_values

Parameters

The parameters whose values are stored in a temporary file from the save_values

routine are the following:

IDAT, IHRST, PT, ETA, DETA, ALSL, SPL, AETA, DFL, NTSD, NTSTM,

NHOUT, DY, TSPH

SKIR
ON

39

6.4. Initialization of the parallel program

Name init_par

Description

During the execution of a parallel program each processor is assigned a set of data

that differ from the ones of the other processors. Thus, it is needed to distinguish

one processor from another. This is achieved by numbering the processors from 0

to p-1 and relating them to the coordinates (my_x, my_y) of the position they hold

on the two-dimensional mesh topology.

Call

Subroutine init_par is called from the main program, before subroutine INIT,

with the command:

 call init_par

Parameters

my_id : the processor’s number

my_x : the processor’s position according to the horizontal axis

my_y : the processor’s position according to the vertical axis.

dim_x : the processor mesh dimension according to the horizontal axis.

dim_y : the processor mesh dimension according to the vertical axis.

np : the number of processors.

SKIR
ON

40

6.5.Creation of the two dimensional mesh topology

Name make_topo

Description

Subroutine make_topo creates the two dimensional mesh topology through which

the message passing procedures will take place. Each processor will communicate

with his top, down, left and right adjacent processor, named ‘upper’, ‘down’, left

and ‘right’, respectively.

Call

Subroutine make_topo is called by the main program with the command:

 call make_topo

Parameters

The following parameters represent the four neighbouring processors of a processor

on the two dimensional mesh.

Upper : Upper neighbour

Down : Lower neighbour

Left : Left neighbour

Right : Right neighbour

SKIR
ON

41

6.6.Termination of the parallel program

Name exit_par

Description

Subroutine exit_par accomplishes the normal termination of the parallel program

by freeing the processors participating in the execution.

Call

It is called at the end of the main program with the command

 call exit_par

Parameters

The parameters used vary according to the parallel implementation environment.

6.7.Local communication

Name exchange

Description

Subroutine exchange handles all the steps involved in the local communication. In

particular, according to the selected communication mode

(synchronous/asynchronous communication), subroutine exchange consists of a

sequence of Send and Receive calls executed by any processor that succeeds on

satisfying certain conditions.

SKIR
ON

42

Local communication is applied when there is a need to update the halo points of

one or more arrays owned by a processor. Normally, this would lead to a

communication pattern involving the eight neighbouring processors of each

processor on the mesh topology. In order to avoid communication between

diagonal processors that contain only a common corner, communication is carried

out in two phases.

� First Phase: The halo-columns are exchanged with the left and right neighbour.

� Second Phase: The halo-rows are exchanged with the upper and lower

neighbour.

The proposed communication scheme consists of four asynchronous Send calls,

that can be performed in pairs concurrently, and four blocking Receive calls. Due to

the fact that the two phases can be performed in any order, there are two possible

ways of arranging the Send and Receive calls. The order that has been selected for

the implementation of the local communication scheme is the following:

{ Exchange }

 if has upper Send (up)

 if has down Send (down)

 if has down Receive (down)

 if has upper Receive (up)

 if has left Send (left)

 if has right Send (right)

 if has right Receive (right)

 if has left Receive (left)

SKIR
ON

43

Each one of the Send routines undertakes to store the message in a vector array

(packing) and then send it through the mesh topology. Similarly, each one of the

Receive routines receives the message and uses its values (unpacking) in order to

update the halo points of the array that caused the genesis of the local

communication at that point.

Call

Due to the fact that all the arrays involved in local communication procedures have

either two or three dimensions, subroutine exchange can take on of the following

forms :

� Exchange_2d, if the array participating in the communication has two

dimensions.

� Exchange_3d, if the array participating in the communication has three

dimensions.

 Thus, local communication is started with the commands:

a) call Exchange_2d (AR2D), when AR2D is the two dimensional array

AR2D(I,J) elements of which will be exchanged.

b) call Exchange_3d (AR3D, LL), when AR3D is the three dimensional array

AR3D(I,J,L) elements of which will be exchanged for L=1(1)LL.

Parameters

The parameters used to set the number of halo points that will be exchanged with

each one of the upper, lower, left and right processors, are respectively

i_BD_U : Number of upper halo-rows

SKIR
ON

44

j_BD_D : Number of lower halo-rows

j_BD_L : Number of left halo-columns

j_BD_R : Number of right halo-columns

6.8. Global Communication

Name Sum_all

Description

The introduction of parallelism on subroutine HZADV2 revealed a

communicational need between all the processors on the mesh topology (global

communication). In particular, each call of subroutine HZADV2 involved a

computation of four global sums, that could not be performed independantly at

each processor, as they demanded the knowledge of points that did not belong to

the same or neighbouring processors.

The subprogram which was developed, namely SUM_all, conducts the gathering of

all the partial sums from the processors the computation and the scattering of all the

computed global sums in one step in order to avoid surcharging the communication

time with the startup time for four separate messages. In particular, assuming that

the number of processors is n and the processor which will collect the partial sums

is processor p, then the algorithm of the subprogram that implements global

communication is the following:

{ SUM-all }

if I am processor p then

for all processors q � p do

Receive (q, Psum1, Psum2, Psum3, Psum4)

SKIR
ON

45

��
n

PsumSum 11

��
n

PsumSum 22

��
n

PsumSum 33

��
n

PsumSum 44

Send (q, Sum1, Sum2, Sum3, Sum4)

else

Send (p, Psum1, Psum2, Psum3, Psum4)

Receive (p, Sum1, Sum2, Sum3, Sum4)

Call

call Sum_all (x, y, s, r)

where x, y, s, r are the partial sums.

Parameters

The messages which are exchanged consist of groups of four partial sums, and

are addressed according to the parameters:

my_x :the position of the processor on the horizontal axis.

my_y :the position of the processor on the vertical axis.

dim_x :the dimension of the mesh topology according to the horizontal axis.

dim_y :the dimension of the mesh topology according to the vertical axis.

6.9. Mixed communication

Name Max_Nclds

SKIR
ON

46

Description

In subroutines FST88 and SWR93 of the model, there was a need to know the

maximum value of vector NCLDS. The values of this vector, though, could not

be computed localy at each processor for the whole vector, as they dependend on

values belonging to different processors. For this reason, a new subrprogram was

implemented. This subprogram is named Max_Nclds and undertakes to compute

the global maximum of vector NCLDS requesting as input the local maximum

values from all the processors that belong to the same column of the two

dimensional mesh. calculations.

Let yx� be a mesh of processors and pi the processor that will gather the local

maximums of the i-th column (1�i�x). Then, subprogram Max_Nclds can be

expressed in pseudocode as follows

{ Ìax_Nclds }

if I am processor pi then

for all processors qi � pi that belong in the ith column of the

mesh

do

Receive (qi, PMaxi)

� �ii PMaxMaxMax �

Send (qi, Maxi)

else

Send (pi, PMaxi)

Receive (pi, Maxi)

Call

call Max_Nclds (K)

SKIR
ON

47

where K is the local maximum of each processor.

Parameters

my_x : the position of the processor on the horizontal axis.

my_y : the position of the processor on the vertical axis.

dim_x : the dimension of the mesh according to the horizontal axis.

dim_y : the dimension of the mesh according to the vertical axis.

6.10.Creation of output files

Name submerge.f

Description

During the execution of the sequential program, subroutine OUTVAR creates in

predefined time periods the output files of the model. Executing the same

subroutine in parallel results in acquiring a number of output files analogous to the

number of processors that participated. These files contain subsets of what would

normally be the output of the model. Program submerge, acting as a postprocessing

part, joins the output data of the parallel program in files, so as to produce the

appropriate output.

Call

Program submerge is executed with the command

SKIR
ON

48

 Submerge k

where k=1(1) TEND/TBOCO

and its execution does not depend on the termination of the parallel program, as far

as there exists at least one set of output files to join.

Parameters

Program submerge.f includes the following file:

parallel.h :contains all the statements relevant to the parallel program, with the

 capacity of changing values:

 N_X_GRID : number of processors in the horizontal axis

 N_Y_GRID : number of processors in the vertical axis

 NUM_PROCS : N_X_GRID x N_Y_GRID (number of processors)

6.11. Time measurements

Name ekpa_time

Description

The lack of uniform timing schemes on the platforms used for the implementation

lead to the creation of a intermediate timing function whose content will vary

according to the platform in use, but whose call will always use the same name and

syntax.

Function Ekpa_time returns in all cases the wall-clock time taken to execute the

model in seconds.

Call

SKIR
ON

49

Function Ekpa_time is called every time there is a timing issue with the command

now = ekpa_time()

where now: A double precision floating point number (REAL*8).

SKIR
ON

50

7.Implementing communication using PVM

7.1. init_par

Name init_par

Description

Spawning of processes and enrolment in the group “topo”.

Routines

a) pvmfmytid: Returns the tid of the calling process

call pvmfmytid (tid)

tid : 32-bit positive integer task identifier number unique for each process

b) pvmfjoingroup: Enrolls the calling process in a named group

call pvmfjoingroup (group, inum)

group : character string group name of an existing group

inum : integer instance number returned, different for each procedure

c) pvmfspawn : Starts new pvm processes

call pvmfspawn (task, flag, where, ntask, tids, numt)

task : character string containing the executable file name

SKIR
ON

51

flag : integer specifying spawn options

where : host or architecture where the processes will be started

ntask : the number of copies of the executable to start up

tids : integer array which, on return will contain the tids of the new

processes

numt : integer returning the actual number of tasks started

d) pvmfbarrier: Blocks the calling process until all processes in a group have

called it

call pvmfbarrier (group, count, info)

group :character string group name

count :integer number of group members that must call pvmfbarrier

before they are all released

info : integer status code returned by the routine

7.2. make_topo

Name make_topo

Description

Retrieval, for each process, of the tids of the processes which belong to the group

"topo" and are executed by neighbouring processors.

Routines

a) Pvmfgettid: Returns the tid of the process identified by a group name and

instance number

call pvmfgettid (group, inum, tid)

SKIR
ON

52

group : character string containing the name of an existing group

inum :integer instance number of the process in the group

tid : integer task identifier returned

7.3. Exchange

Name Exchange

Description

Implements local communication.

Routines

a) pvmfinitsend: Clears default send buffer and specifies message encoding

call pvmfinitsend (encod, bufid)

encod : integer specifying the next message’s encoding scheme

bufid : integer message buffer identifier

b) pvmfpack: Packs the active message buffer with arrays of prescribed data type

call pvmfpack(what, xp, nitem, stride, info)

what : integer specifying the type of data being packed

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be packed

stride : the stride to be used when packing the items

info : integer status code returned by the routine

c) pvmfsend: Sends the data in the active message buffer

SKIR
ON

53

call pvmfsend (tid, msgtag, info)

tid : integer task identifier of destination process

msgtag : integer message tag supplied by the user

info : integer status code returned by the routine

d) pvmfrecv : Receives a message

call pvmfrecv (tid, msgtag, info)

tid : integer task identifier of sending process supplied by the user

msgtag : integer message tag supplied by the user

info : integer returning the value of the new active receive buffer

identifier

e) pvmfunpack: Unpacks the active message buffer into arrays of prescribed data

type

call pvmfunpack (what, xp, nitem, stride, info)

what : integer specifying the type of data being unpacked

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be unpacked

stride : the stride that was used when packing the items

info : integer status code returned by the routine

f) pvmffreebuf: Disposes of a message buffer

call pvmffreebuf (bufid, info)

bufid : integer message buffer identifier

info : integer status code returned by the routine

SKIR
ON

54

7.4. Sum_all

Name: Sum_all

Description

The algorithm which is executed in order to conduct global communication on

PVM, has been chosen to use asynchronous message send and blocking receive.

Routines

a) pvmfinitsend: Clears default send buffer and specifies message encoding

call pvmfinitsend (encod, bufid)

encod : integer specifying the next message’s encoding scheme

bufid : integer message buffer identifier

b) pvmfpack: Packs the active message buffer with arrays of prescribed data type

call pvmfpack(what, xp, nitem, stride, info)

what : integer specifying the type of data being packed

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be packed

stride : the stride to be used when packing the items

info : integer status code returned by the routine

c) pvmfsend: Sends the data in the active message buffer

call pvmfsend (tid, msgtag, info)

tid : integer task identifier of destination process

SKIR
ON

55

msgtag : integer message tag supplied by the user

info : integer status code returned by the routine

d) pvmfrecv : Receives a message

call pvmfrecv (tid, msgtag, info)

tid : integer task identifier of sending process supplied by the user

msgtag : integer message tag supplied by the user

info : integer returning the value of the new active receive buffer

identifier

e) pvmfunpack: Unpacks the active message buffer into arrays of prescribed data

type

call pvmfunpack (what, xp, nitem, stride, info)

what : integer specifying the type of data being unpacked

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be unpacked

stride : the stride that was used when packing the items

info : integer status code returned by the routine

f) pvmffreebuf: Disposes of a message buffer

call pvmffreebuf (bufid, info)

bufid : integer message buffer identifier

info : integer status code returned by the routine

7.5. Max_Nclds

Name: Max_Nclds

SKIR
ON

56

Description

The algorithm which is executed in order to conduct mixed communication on

PVM, has been chosen to use asynchronous message send and blocking receive.

Routines

a) pvmfinitsend: Clears default send buffer and specifies message encoding

call pvmfinitsend (encod, bufid)

encod : integer specifying the next message’s encoding scheme

bufid : integer message buffer identifier

b) pvmfpack: Packs the active message buffer with arrays of prescribed data type

call pvmfpack(what, xp, nitem, stride, info)

what : integer specifying the type of data being packed

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be packed

stride : the stride to be used when packing the items

info : integer status code returned by the routine

c) pvmfsend: Sends the data in the active message buffer

call pvmfsend (tid, msgtag, info)

tid : integer task identifier of destination process

msgtag : integer message tag supplied by the user

info : integer status code returned by the routine

SKIR
ON

57

d) pvmfrecv : Receives a message

call pvmfrecv (tid, msgtag, info)

tid : integer task identifier of sending process supplied by the user

msgtag : integer message tag supplied by the user

info :integer returning the value of the new active receive buffer

identifier

e) pvmfunpack: Unpacks the active message buffer into arrays of prescribed data

type

call pvmfunpack (what, xp, nitem, stride, info)

what : integer specifying the type of data being unpacked

xp : pointer to the beginning of a block of bytes

nitem : the total number of items to be unpacked

stride : the stride that was used when packing the items

info : integer status code returned by the routine

f) pvmffreebuf: Disposes of a message buffer

call pvmffreebuf (bufid, info)

bufid : integer message buffer identifier

info : integer status code returned by the routine

7.6. Exit_par

Name exit_par

SKIR
ON

58

Description

Termination of the parallel program

Routines

a) pvmflvgroup: Unenrolls the calling process from a named group

call pvmflvgroup (group, info)

group : character string group name of an existing group

info : integer status code returned by the routine

b) pvmfexit: Informs the daemon that the calling process is leaving PVM

call pvmfexit (info)

info : integer status code returned by the routine

SKIR
ON

59

8.Implementing communication using MPI

8.1. init_par

Name init_par

Description

Preparation for program execution with MPI

Routines

a) MPI_init: MPI initialization

call MPI_Init (ierror)

ierror : error code

b)MPI_Comm_Rank: Initialisation of the process communication field.

call MPI_Comm_Rank (comm, rank, ierror)

comm : the communicator

rank : integer number returned, different for each process

ierror : error code

SKIR
ON

60

8.2. make_topo

Name make_topo

Description

In the make_topo routine MPI commands have not been used, as the creation of a

virtual topology is not necessary for communication. The virtual topology is

created through the logical variables has_upper, has_down, has_left, has_right.

8.3.Exchange

Name Exchange

Description

The algorithm which implements local communication in MPI, has been selected to

use buffered send and blocking receive.

Routines

a) MPI_Buffer_Attach: Provides to MPI a buffer in the user’s memory to be used

for buffering outgoing messages.

call MPI_Buffer_Attach (buffer, size, ierror)

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

b)MPI_Buffer_Detach: Detaches the currently associated with MPI buffer

call MPI_Buffer_Detach ((buffer, size, ierror)

SKIR
ON

61

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

c) MPI_BSend : Send in buffered mode

call MPI_BSend (buf,count,dtype, dest, tag, comm, ierror)

buf : initial address of send buffer

count : number of elements in send buffer

dtype : datatype of each send buffer element

dest : rank of destination

tag : message tag

comm : the communicator

ierror : error code

d) MPI_Recv : Blocking receive

call MPI_Recv (buf, count, dtype, source, tag, comm, status, ierror)

buf : initial address of receive

count : number of elements in receive buffer

dtype : datatype of each receive buffer element

source : rank of source

tag : message tag

comm : the communicator

status : status object

ierror : error code

SKIR
ON

62

8.4. Sum_all

Name Sum_all

Description

The algorithm which implements global communication in MPI, has been selected

to use buffered send and blocking receive.

Routines

a) MPI_Buffer_Attach: Provides to MPI a buffer in the user’s memory to be used

for buffering outgoing messages.

call MPI_Buffer_Attach (buffer, size, ierror)

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

b)MPI_Buffer_Detach: Detaches the currently associated with MPI buffer

call MPI_Buffer_Detach ((buffer, size, ierror)

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

c) MPI_BSend : Send in buffered mode

call MPI_BSend (buf,count,dtype, dest, tag, comm, ierror)

SKIR
ON

63

buf : initial address of send buffer

count : number of elements in send buffer

dtype : datatype of each send buffer element

dest : rank of destination

tag : message tag

comm : the communicator

ierror : error code

d) MPI_Recv : Blocking receive

call MPI_Recv (buf, count, dtype, source, tag, comm, status, ierror)

buf : initial address of receive

count : number of elements in receive buffer

dtype : datatype of each receive buffer element

source : rank of source

tag : message tag

comm : the communicator

status : status object

ierror : error code

8.5. Max_Nclds

Name Max_Nclds

Description

The algorithm which implements mixed communication in MPI, has been selected

to use buffered send and blocking receive.

SKIR
ON

64

Routines

a) MPI_Buffer_Attach: Provides to MPI a buffer in the user’s memory to be used

for buffering outgoing messages.

call MPI_Buffer_Attach (buffer, size, ierror)

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

b)MPI_Buffer_Detach: Detaches the currently associated with MPI buffer

call MPI_Buffer_Detach ((buffer, size, ierror)

buffer : initial buffer address.

size : the size of the buffer in bytes

ierror : error code

c) MPI_BSend : Send in buffered mode

call MPI_BSend (buf,count,dtype, dest, tag, comm, ierror)

buf : initial address of send buffer

count : number of elements in send buffer

dtype : datatype of each send buffer element

dest : rank of destination

tag : message tag

comm : the communicator

SKIR
ON

65

ierror : error code

d) MPI_Recv : Blocking receive

call MPI_Recv (buf, count, dtype, source, tag, comm, status, ierror)

buf : initial address of receive

count : number of elements in receive buffer

dtype : datatype of each receive buffer element

source : rank of source

tag : message tag

comm : the communicator

status : status object

ierror : error code

8.6. exit_par

Name exit_par

Description

Termination of the processes

Routines

a)MPI_Finalize: Termination of the use of MPI states by the process

call MPI_Finalize (ierror)

ierror : error code

SKIR
ON

66

9.The Parsytec CC-8 parallel computer

The Parsytec-CC parallel computing system belongs to the class of cognitive

systems and has been designed to offer solutions in the area of cognitive

automation for industrial and scientific applications.

9.1. Architecture of the Parsytec-CC

The system architecture follows the principles of MIMD computers. A CC system

is usually composed of the following main parts which, depending on the way they

are linked and arranged, form a CC system of variable size and topology.

IO-MODULE : It is a processor node that consists of one or more processors with

peripheral I/O.

P- MODULE: Purely processing node with one or more than one processors, local

disc and an HS-Link interface.

ROUTER-MODULE: The nodes are connected by Router-Modules.

More in depth, the Parsytec-CC computing system consists of a group of

interlinked processor nodes, each of which has its own local memory. Each node is

a RISC PowerPC-604 processor, while the interconnection is achieved through a

serial high speed communication link (HS-Link). In addition, high performance

routers offering a deadlock - free mechanism, suitable for the establishment of a

high performance communication network, are used.

9.1.1.Partitions

A partition is a group of processors allocated exclusively to one user. Usually, a

partition is only a part of the whole system, although it can include all the machine.

The partitions can overlap, meaning that a partition can constitute a subset of a

SKIR
ON

67

bigger partition. In that case, the allocation of the smaller partition to one user may

lead to the bigger partition being not allocatable to another user.

Every processor node belonging to a partition functions, from the beginning till the

end of the parallel application, independently of the others, possessing its own

executable program copy in its local memory (Single Program Multiple Data). At

the local memory of each processor node only that node has access. In this way, no

other node except the specified can refer to the variables and the data that it uses.

Different program execution by different nodes is achieved

� by the execution of different code parts of the same program copy

� by the application of the same commands on different data

 The identity and the position of each node inside the partition is necessary so that

each node will know what exactly it is doing. This knowledge consists of a group

of local variables for each node such as :

� the dimensions DimX, DimY, DimZ of the partition

� the total number of nodes np in the partition

� the position MyX, MyY, MyZ of the node inside the partition

� the distinctive name MyID of the node

SKIR
ON

68

 DimY

3

2 DimZ

1 4 5 …

0 0 1 2 3

 0 1 2 3 DimX

Figure 4.9.1.1.1: Partition parameters.

For the shaded node in the partition of Fig. 4.9.1.1.1 above we have

 DimX = 4 DimY = 4 DimZ = 1 np = 4�4�1 = 16

 MyX = 1 MyY = 2 MyZ = 0 ID = 9

9.1.2.Virtual processors

In partitions that consist solely of I/O nodes or AIX processing nodes, the number

of processors on which the application will run can be defined. This is achieved by

the definition, during the execution of the program, of a triad of numbers (x,y,z)

which correspond to the coordinates of the processor grid that will be selected.

If the total number of processors requested is greater than the real number of

available nodes, then more than one virtual processors are created in each physical

SKIR
ON

69

node.

9.2. The EPX operating system (Embedded Parix)

The environment supplied for the execution of parallel programs in the Parsytec

CC system is EPX. EPX was developed with the aim of making possible the

management of nodes upon which different tasks have been assigned in such a way

that each node execute its task in an optimal way. The AIX operating system

supports EPX with core and I/O functions.

EPX offers the capacity of creating virtual links and virtual topologies and is

independent of the number of processors.

The EPX daemon (epxd) is used for the management of CC system and allows the

launch of the users applications. The EPX daemon runs on all the AIX nodes (input

and processing nodes). In each of the input nodes it functions as a master daemon,

meaning that it waits at a port for the user's commands. When it receives a user's

command, the daemon forwards it through ethernet to the slave-daemons that run

in the rest of the AIX-CC nodes. The slaves will subsequently execute the

command.

9.2.1.Capabilities

The EPX programming model was designed in accordance to the existing demands

for parallel algorithms and combines a set of static and dynamic programming

capabilities.

� Static capabilities

 - Identical main program loaded in all the processors.

 - Recognition of the network size.

 - Recognition of a specific position inside the network.

� Dynamic capabilities

 - Creation of special processes (threads)

SKIR
ON

70

 - Establishment of communication lines between random processors.

 - Synchronous and asynchronous communication.

 - Handling of user defined virtual topologies.

 - Loading and execution of additional code (contexts).

� Services

 - Use of RPC calls (Remote Procedure Calls).

 - Sustenance of specific servers.

9.2.2.Message Passing

EPX communication is based upon the principle of virtual links, which establish

the connections in the grid. Three types of communication are available in EPX:

Synchronous communication through virtual links. The communicating

processes must be linked by a (virtual) link and are synchronized during the

communication. For example, the process which is ready to communicate with

another, must wait for the second one to get ready also, and the data transmission

procedure does not start until both processes are ready.

Synchronous random communication. This type of communication does not

require the definition of virtual links. However, if the messages are large, library

calls establish internally a virtual link for performance purposes.

Asynchronous communication through virtual links. In this case the

communication is accomplished at the same time as the computations. Message

transmission and receipt takes place in the background while the processor

continues to run.

9.2.3.PowerPVM/EPX

SKIR
ON

71

PowerPVM/EPX is a homogeneous version of PVM specially designed for

EPX/AIX which was created for the maximal exploitation of Parsytec CC system

capabilities.

This PVM version is compatible with the 3.3 PVM edition and has the following

distinctive features:

� PowerPVM/EPX runs exclusively on the nodes of a Parsytec CC system.

� It supplies CC systems with the capacity to exploit PVM full functionality.

� For every node the creation of up to 32 multiple dynamic processes is

allowed.

� The capability of spawning selected PVM processes in specific system

nodes by the use of special commands is available.

� Every parallel machine node is regarded as a host. Subsequently, a parallel

machine of n nodes is considered as a network of n hosts of the same

architecture.

� PVM/EPX termination comes with the exit of the last process from the

parallel application.

� Power PVM/EPX offers the capacity for scalability. It has already been

tested on a 40 node system and no problems are expected in the case of

more nodes utilisation.

9.2.4.EPX features

EPX as a programming environment for CC system offers basically the following:

� Reliability

� Scalability

� High performance

� Scaling of the differences between architectures

� Independency from underlying hardware

� Ease of use

SKIR
ON

72

9.3. Parallel Implementation of the Eta code

The techniques used to parallelize the Eta model for the Parsytec CC-8 platform

follow in general the principles described in Section 5, and especially in the case

that the parallel environment of the implementation is PVM. In the case of

PARIX, though, there are some differences mainly in the communication

schemes that are of interest. Of course, the local communication algorithm

remains the same and message passing is conducted using asynchronous send

calls and synchronous receive calls. The global and mixed communication

algorithms although they retain the mode of communication, they ignore the

master-slave like connections of PVM and MPI, and focus on the locality of

message passing at a step, taking advantage of the mesh topology.

9.3.1.Global Communication

Let p=(px, py) be the processor in the middle of a dimx � dimy mesh of np

processors, i.e. for this processor px=dimx div 2, py=dimy div 2. Then, the basic

idea is to progressively compute partial sums by passing the messages from each

processor to a selected neighbour, until we reach processor p, who will receive

only four sums (Instead of np-1 which was the case of the MPI implementation)

one from each neighbour and then spread the messages in reverse order. The

pseudocode describing this procedure for a processor q is the following

{ SUM-all }

if p is on my north then

{

 if I have a down neighbour then

 {

Receive (down, Psum1, Psum2, Psum3, Psum4)

Sum1 = Sum1 + Psum1

Sum2 = Sum2 + Psum2

Sum3 = Sum3 + Psum3

SKIR
ON

73

Sum4 = Sum4 + Psum4}

 }

 Send (upper, Sum1, Sum2, Sum3, Sum4)

 Receive (upper, Sum1, Sum2, Sum3, Sum4)

 if I have a down neighbour Send(down, Sum1, Sum2, Sum3, Sum4)

}

else if p is on my south then

{

 if I have an upper neighbour then

 {

 Receive (upper, Psum1, Psum2, Psum3, Psum4)

Sum1 = Sum1 + Psum1

Sum2 = Sum2 + Psum2

Sum3 = Sum3 + Psum3

Sum4 = Sum4 + Psum4

 }

 Send (down, Sum1, Sum2, Sum3, Sum4)

 Receive (down, Sum1, Sum2, Sum3, Sum4)

 if I have an upper neighbour then Send(upper, Sum1, Sum2, Sum3,

Sum4)

}

else if I am in the same row of the mesh with p then

{

 if I have a down neighbour then

 {

 Receive (down, Psum1, Psum2, Psum3, Psum4)

Sum1 = Sum1 + Psum1

Sum2 = Sum2 + Psum2

SKIR
ON

74

Sum3 = Sum3 + Psum3

Sum4 = Sum4 + Psum4

 }

 if I have an upper neighbour then

 {

 Receive (upper, Psum1, Psum2, Psum3, Psum4)

Sum1 = Sum1 + Psum1

Sum2 = Sum2 + Psum2

Sum3 = Sum3 + Psum3

Sum4 = Sum4 + Psum4

 }

 if p is on my east then

 {

 if I have a left neighbour then

{

 Receive (left, Psum1, Psum2, Psum3, Psum4)

 Sum1 = Sum1 + Psum1

 Sum2 = Sum2 + Psum2

 Sum3 = Sum3 + Psum3

 Sum4 = Sum4 + Psum4

}

 Send (right, Sum1, Sum2, Sum3, Sum4)

Receive (right, Sum1, Sum2, Sum3, Sum4)

if I have a left neighbour then Send (left, Sum1, Sum2, Sum3,

Sum4)

 }

 else if p is on my west then

 {

 if I have a right neighbour then

SKIR
ON

75

{

 Receive (right, Psum1, Psum2, Psum3, Psum4)

 Sum1 = Sum1 + Psum1

 Sum2 = Sum2 + Psum2

 Sum3 = Sum3 + Psum3

 Sum4 = Sum4 + Psum4

}

 Send (left, Sum1, Sum2, Sum3, Sum4)

Receive (left, Sum1, Sum2, Sum3, Sum4)

if I have a right neighbour then Send(right, Sum1, Sum2, Sum3,

Sum4)

 }

 else if I am p then

 {

 if I have a left neighbour then

Receive (left, LPsum1, LPsum2, LPsum3, LPsum4)

 if I have a right neighbour then

Receive (right, RPsum1, RPsum2, RPsum3, RPsum4)

 Sum1 = Sum1 + LPsum1 + RPsum1

Sum2 = Sum2 + LPsum2 + RPsum2

Sum3 = Sum3 + LPsum3 + RPsum3

Sum4 = Sum4 + LPsum4 + RPsum4

if I have a left neighbour then

Send (left, Sum1, Sum2, Sum3, Sum4)

if I have a right neighbour then

Send (right, Sum1, Sum2, Sum3, Sum4)

 }

SKIR
ON

76

 if I have a down neigbour then Send (down, Sum1, Sum2, Sum3,

Sum4)

if I have an upper neigbour then Send (upper, Sum1, Sum2, Sum3,

Sum4)

}

9.3.2.Mixed Communication

As in the case of global communication, we request p=(px, py) to be a central

processor of the message’s route, but this time not in the center of the mesh, but

in the middle of a processor column, For this reason, for a dimx � dimy mesh of

np processors we select dimx processors pi=(pxi, pyi), where 0 � pxi� dimx-1 and

pyi=dimy div 2. Then, the basic idea is to progressively compute partial

maximums in column i by passing the messages from each processor either to

his upper or to his down neighbour, until we reach pi, who will receive only two

maximums and then spread the messages in reverse order. The pseudocode

describing this procedure for a processor q is the following

{ Max_NCLDS }

if pi is on my north then

{

 if I have a down neighbour then

 {

Recv (down, Pmaxi)

Maxi = max {Maxi, Pmaxi}

 }

 Send (upper, Maxi)

 Receive (upper, Maxi)

 if I have a down neighbour then Send (down, Maxi)

}

SKIR
ON

77

else if pi is on my south then

{

 if I have an upper neighbour then

 {

Recv (upper, Pmaxi)

Maxi = max {Maxi, Pmaxi}

 }

 Send (down, Maxi)

 Receive (down, Maxi)

 if I have an upper neighbour then Send (upper, Maxi)

}

else if I am pi then

{

 if I have a down neighbour then Recv (down, DPmaxi)

 if I have an upper neighbour then Recv (upper, UPmaxi)

Maxi = max {Maxi, DPmaxi, UPmaxi}

 if I have a down neighbour then Send (down, Maxi)

 if I have an upper neighbour then Send (upper, Maxi)

}

9.4. Implementing communication using Parix

The most important PARIX function and procedures that were used during the

design phase of the parallel implementation of the Eta model on Parsytec CC-8

are described in this section with some details concerning their arguments and

their calls.

SKIR
ON

78

a) getdim (function)

description : returns the dimensions of the partition

call : integer DimX, DimY, DimZ

call getdim (DimX, DimY, DimZ)

b) nprocs (procedure)

description : returns the number of nodes in the partition

call : integer np

np = nprocs()

c) getmypos (function)

description : returns the node’s coordinates in the partition

call : integer MyX, MyY, MyZ

call getmypos(MyX, MyY, MyZ)

d) myprocid (procedure)

description : returns the id of a node

call : integer MyID

SKIR
ON

79

MyID = myprocid()

e) newtop (procedure)

description : creates a new topology which is characterized by the

number

TopId and has a maximum number of allowed links equal

to

nLinks.

call : integer nLinks, TopId

TopId = newtop(nLinks)

f) addnewlink (procedure)

description : creates a new link between the calling node and the node

ProcId in the topology defined by TopId, and returns the

number LogLinkId that represents this link.

call : integer LogLinkId, TopId, ProcId, RequestId

LogLinkId = addnewlink(TopId, ProcId, RequestId)

g) px-ainit (procedure)

description : initializes all the necessary for the asynchronous

communication data structures in topology TopId.

call : integer TopId, threads, size

SKIR
ON

80

call ainit(TopId, threads, size)

h) px-aexit (procedure)

description : frees the internal data structures used for

the asynchronous communication

call : integer TopId

call aexit (TopId)

i) px-asend (procedure)

description : asynchronous send.

call : integer TopId, LogLinkId , size, result

[data_type] data

call asend(TopId, LogLinkId, data, size, result)

j) px-recv (procedure)

description : synchronous receive.

call : integer LogLinkId ,TopId, ProcId, size

[data_type] data

call recv(TopId, LogLinkId, data, size)

SKIR
ON

81

9.5.Numerical Results

The aforementioned techniques have been successfully tested and validated on

the Parsytec CC platform, using PVM due to its portability, and PARIX because

it was the native parallel environment of the machine.

Figures 4.9.5.2-5 represent our numerical results of the model as they were

estimated for a 48h run of 1920 steps on a 121�161�32 grid, with 4, 6 and 8

processors, respectively. Times are measured in seconds in all cases.

The reduction in time of the parallel code as compared to its sequential version is

significant (Fig. 4.9.5.2). The speedup is almost linear for all versions (Fig.

4.9.5.3), and the efficiency is above 0.8 (Fig. 4.9.5.3). Fig. 4.9.5.4, 4.9.5.5 show

the behaviour of the computation and communication time. PVM seems to

perform better than PARIX at least when p>6 justifying the discrepancy

identified in the speedup.

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 5 6 7 8

S
ec

on
ds

Number of processors

Total time

CC-PVM
CC-PARIX

Figure 4.9.5.2: Parallel run time

SKIR
ON

82

0

1

2

3

4

5

6

7

8

4 6 8

S
pe

ed
up

 S
p

Number of processors

CC-PVM
CC-PARIX

0

0.2

0.4

0.6

0.8

1

1.2

4 6 8

E
ffi

ci
en

cy

Number of processors

CC-PVM
CC-PARIX

Figure 4.9.5.3: Speedup-Efficiency

6000

8000

10000

12000

14000

16000

18000

20000

4 6 8

S
ec

on
ds

Number of processors

Computation

CC-PVM
CC-PARIX

1000

1500

2000

2500

3000

3500

4000

4 6 8

S
ec

on
ds

Number of processors

Communication

CC-PVM
CC-PARIX

Figure 4.9.5.4: Computation-Communication

SKIR
ON

83

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4 6 8

T
_c

om
m

/T
_c

om
p

Number of processors

Communication/Computation

CC-PVM
CC-PARIX

Figure 4.9.5.5: Communication/Computation

SKIR
ON

84

Appendix 4-1

Execution instructions for the parallel eta code

on the Convex SPP1600 platform

SKIR
ON

85

Execution of the parallel eta code on the

Convex SPP1600 platform (SKIRON Version 4.0)

1. Time selection

 Directory: SKIRON.4.0/model/PAR/

 Modify parameter TEND in file fcstdata.

2. Processor grid selection

 Directory: SKIRON.4.0/model/SPL/

 Modify parameters N_X_GRID and N_Y_GRID in file parallel.h

 Example: To execute the parallel program with eight processors using a 2 x 4

mesh topology, set N_X_GRID = 2 and N_Y_GRID = 4.

3. Input file creation

 NOTE: In the case that the program needs more than 30Mb memory, before the

following steps, execute the command

 mpa -STACK -DATA

 Directory: SKIRON.4.0/model/SPL/

 Data partitioning

 make HP-UX

 subsplit

 sboco 1

 sboco 2

 …

 sboco k

SKIR
ON

86

 where k=1(1)TEND/TBOCO

4. Execution of the parallel program

 4.1. Using PVM

 Directory: SKIRON.4.0/model/PAR/

 Compilation

 make pvm

 Directory: SKIRON.4.0/modelTB/exe/

 Execution

 echo �pvm host_spp_pvm

 peta_v4.0

 echo halt � pvm

 4.2. Using MPI

 Directory: SKIRON.4.0/model/PAR/

 Compilation

 make mpi

 Directory: SKIRON.4.0/model/exe/

 Execution

 mpirun -np n peta_v4.0

 or

 mpirun -np n -w peta_v4.0

 where n = N_X_GRID � N_Y_GRID the total number of processes that will be

executing the parallel program.

SKIR
ON

87

 Example: To use a 2 x 3 mesh topology, you must have N_X_GRID,

N_Y_GRID equal to 2 and 3, respectively, and start the execution of the parallel

program with the command:

 mpirun -np 6 peta_v4.0

 or

 mpirun -np 6 -w peta_v4.0

5. Output file creation

Directory: SKIRON.4.0/model/SPL/

make HP-UX

submerge 000

 ….

submerge 048

if the parallel program was executed for a 48 hour forecast.

SKIR
ON

88

Appendix 4-2

Results of the parallel eta code on the convex SPP1600

platform

with PVM and MPI

SKIR
ON

89

Machine SPP-1600 / PVM

Optimization level O0 TLMOD 10.00

DLMD, DPHD 0.25, 0.25 TPHOD 40.00

Hours 48 WBD -30.00

IM X JM X LM 121 x161 x32 SBD -20.00

of iterations 1920 timestep 90 sec

Proc. 2x2 1 2 3 4
T_seq 66959.63

T_comp 16842.99 16364.75 16754.41 16396.34

T_comm 1833.62 2311.23 1922.21 2280.32

T_io 3.77 3.09 2.43 2.42

T_clear 18676.61 18675.98 18676.62 18676.66

T_total 18680.38 18679.07 18679.05 18679.08

Sp 3.59

Ep 0.90

Proc. 2x3 1 2 3 4 5 6
T_seq 66959.63

T_comp 10989.29 11267.29 11064.74 11708.94 11107.31 11258.39

T_comm 2697.01 2417.80 2620.28 1977.80 2580.06 2429.04

T_io 5.67 5.63 5.65 3.79 3.12 3.12

T_clear 13686.30 13685.09 13685.03 13686.73 13687.37 13687.43

T_total 13691.97 13690.71 13690.67 13690.52 13690.49 13690.55

Sp 4.89

Ep 0.82

SKIR
ON

90

Proc. 2x4 1 2 3 4 5 6 7 8
T_seq 66959.63

T_comp 8865.21 8887.57 8782.56 9231.32 8753.18 9545.32 8536.36 8992.63

T_comm 3514.44 3491.09 3596.13 3146.80 3625.33 2833.07 3843.15 3386.08

T_io 10.63 10.48 10.52 10.93 10.40 10.50 9.59 10.53

T_clear 12379.65 12378.65 12378.69 12378.12 12378.51 12378.39 12379.51 12378.71

T_total 12390.28 12389.13 12389.21 12389.05 12388.91 12388.89 12389.10 12389.24

Sp 5.41

Ep 0.68

Efficiency

0.90
0.82

0.68

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

2x2 2x3 2x4

E
p

Speedup

3.59

4.89
5.41

0.00

1.00

2.00

3.00

4.00

5.00

6.00

2x2 2x3 2x4

S
p

SKIR
ON

91

Machine SPP-1600 / PVM

optimization level O0 TLMOD 10.00

DLMD, DPHD 0.25, 0.25 TPHOD 40.00

hours 48 WBD -30.00

IM X JM X LM 121 x161 x32 SBD -20.00

of iterations 1920 timestep 90 sec

Total Time

3h 26m3h 50m

5h 11m

19h 36m

0

10000

20000

30000

40000

50000

60000

70000

80000

1 4 6 8

Processors

S
ec

on
ds

SKIR
ON

92

Machine SPP-1600 / MPI

optimization level O0 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 timestep 90 sec

proc. 2x2 1 2 3 4
T_seq 66959,63

T_comp 15857,85 16943,61 15694,50 16519,38

T_comm 1714,84 629,59 1876,57 1052,01

T_io 2,18 1,66 3,75 3,61

T_clear 17572,69 17573,19 17571,08 17571,39

T_total 17574,87 17574,86 17574,83 17575,00

Sp 3,81

Ep 0,95

proc. 2x3 1 2 3 4 5 6
T_seq 66959,63

T_comp 10769,42 11121,40 11000,81 11421,39 10684,04 11086,43

T_comm 1424,27 1072,82 1193,51 774,70 1510,55 1108,83

T_io 5,76 5,17 5,09 3,30 4,75 4,37

T_clear 12193,70 12194,22 12194,32 12196,09 12194,59 12195,25

T_total 12199,46 12199,39 12199,41 12199,40 12199,34 12199,63

Sp 5,49

Ep 0,91

SKIR
ON

93

proc. 2x4 1 2 3 4 5 6 7 8
T_seq 66959,63

T_comp 8318,69 8583,78 8464,25 8839,55 8467,24 9180,78 8187,24 8505,67

T_comm 1702,82 1437,79 1557,35 1182,01 1554,74 841,13 1834,57 1516,04

T_io 2,08 2,02 1,93 1,91 1,43 1,49 1,58 2,05

T_clear 10021,51 10021,57 10021,61 10021,56 10021,97 10021,92 10021,81 10021,70

T_total 10023,58 10023,59 10023,53 10023,47 10023,40 10023,41 10023,39 10023,75

Sp 6,68

Ep 0,84

Speedup

3.81

5.49

6.68

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2x2 2x3 2x4

S
p

Efficiency

0.95

0.91

0.84

0.75

0.80

0.85

0.90

0.95

1.00

2x2 2x3 2x4

E
p

SKIR
ON

94

Machine SPP-1600 / MPI

optimization level O0 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 timestep 90 sec

Total Time

2h 47m
3h 23m

4h 53m

18h 36m

0

10000

20000

30000

40000

50000

60000

70000

80000

1 4 6 8

Processors

S
ec

on
ds

SKIR
ON

95

Appendix 4-3

Results of the parallel eta code on the Convex SPP-

2000 platform

with MPI

SKIR
ON

96

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.125, 0.125 TPHOD 40,00

Hours 12 WBD -30,00

IM X JM X LM 241 x321 x32 SBD -20,00

of iterations 960 Timestep 45 sec

�

����

����

����

����

�����

�����

�����

�����

�����

�����

������� 	 ������

�
�
�
�
�
�
�

��	
��� ����� ���� ��� ���� ��� �� ���� ��� ���� ���� ��� ���� ��� � ����

��� ��� � �� ��� �� ��� �� �� ��� ��� �� ��� ��� ���

SKIR
ON

97

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.125, 0.125 TPHOD 40,00

Hours 12 WBD -30,00

IM X JM X LM 241 x321 x32 SBD -20,00

of iterations 960 Timestep 45 sec

����

����

�����

�����

�����

�����

�����

�����

�����

������� 	 ������

�
�
�
�
�
�
�

�	
�	�� ��� ���� ���� ����� ����� ���� ���� ���� ����� ����� ����� ���� ���� ����� �����

��� ��� ��� ��� ��� ��� ��� ��� �� ��� ��� ��� ��� ��� ��

SKIR
ON

98

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.125, 0.125 TPHOD 40,00

Hours 12 WBD -30,00

IM X JM X LM 241 x321 x32 SBD -20,00

of iterations 960 Timestep 45 sec

����

����

����

����

����

����

����

����

����

������� 	 ������

�
		

�

�
�
�
�

��	
��� ���� ���� ��� ��� ���� ���� ���� ��� �� ���� ���� ��� ���� ���� ����

��� ��� � �� ��� �� ��� �� �� ��� ��� �� ��� ��� ���

SKIR
ON

99

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

Hours 24 WBD -30,00

IM X JM X LM 121 x 161 x 32 SBD -20,00

of iterations 960 Timestep 90 sec

�

���

����

����

����

����

����

����

����

������� 	 ������

�
�
�
�
	
�

�	
�	�� ���� ���� ���� ���� ���� ���� ���� ���� ���

��� ��� ��� ��� ��� ��� ��� ��� ��

SKIR
ON

100

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

Hours 24 WBD -30,00

IM X JM X LM 121 x 161 x 32 SBD -20,00

of iterations 960 Timestep 90 sec

����

����

����

����

����

�����

�����

�����

�����

������� 	 ������

�
�
�
�
�
�
�

��	
��� ���� ���� ���� ���� ���� ���� ���� ���� �����

��� ��� � �� ��� ��� ��� ��� ���

SKIR
ON

101

Machine Convex SPP-2000 /MPI

Optimization level O2 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

Hours 24 WBD -30,00

IM X JM X LM 121 x 161 x 32 SBD -20,00

of iterations 960 Timestep 90 sec

����

����

����

����

���

����

����

����

������� 	 ������

�
��
�
�
	
�
�

�	
�	�� ���� ���� ���� ��� ���� ���� ���� ���� ����

��� ��� ��� ��� ��� ��� ��� ��� ��

SKIR
ON

102

Appendix 4-4

Results of the parallel eta code on the Parsytec CC-8

platform

with PARIX and PVM

SKIR
ON

103

machine PARSYTEC CC / PVM

optimization level O3 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 timestep 90 sec

proc. 2x2 1 2 3 4
T_seq 78781,76

T_comp 16842,99 16364,75 16754,41 16396,34

T_comm 1833,62 2311,23 1922,21 2280,32

T_io 3,77 3,09 2,43 2,42

T_clear 18676,61 18675,98 18676,62 18676,66

T_total 18680,38 18679,07 18679,05 18679,08

Sp 4,22

Ep 1,05

proc. 2x3 1 2 3 4 5 6
T_seq 78781,76

T_comp 10646,36 10872,78 11048,88 11738,09 10346,86 10846,16

T_comm 3107,75 2879,62 2703,23 2013,60 3404,73 2905,40

T_io 11,49 11,49 11,48 11,48 11,48 11,48

T_clear 13754,11 13752,40 13752,11 13751,69 13751,59 13751,56

T_total 13765,60 13763,89 13763,59 13763,17 13763,07 13763,04

Sp 5,73

Ep 0,95

SKIR
ON

104

proc. 2x4 1 2 3 4 5 6 7 8
T_seq 78781,76

T_comp 8186,80 8230,85 8034,74 8344,52 8009,79 8576,42 8209,18 8548,76

T_comm 2577,01 2531,32 2726,79 2416,55 2751,25 2184,46 2551,26 2211,49

T_io 12,83 12,83 12,83 12,83 12,82 12,82 12,82 12,82

T_clear 10763,81 10762,17 10761,53 10761,08 10761,04 10760,87 10760,44 10760,25

T_total 10776,64 10775,00 10774,36 10773,90 10773,86 10773,69 10773,26 10773,06

Sp 7,32

Ep 0,91

Speedup

4.22

5.73

7.32

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

2x2 2x3 2x4

S
p

Efficiency

1.05

0.95

0.91

0.80

0.85

0.90

0.95

1.00

1.05

1.10

2x2 2x3 2x4

E
p

SKIR
ON

105

machine PARSYTEC CC / PVM

optimization level O3 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 timestep 90 sec

Total Time

2h 59m
3h 49m

5h 11m

22h 53m

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 4 6 8

Processors

S
ec

on
ds

SKIR
ON

106

machine PARSYTEC CC / PARIX

optimization level O3 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 timestep 90 sec

proc. 2x2 1 2 3 4
T_seq 78781,76

T_comp 15720,39 16251,03 16080,62 16980,45

T_comm 2972,44 2441,46 2612,05 1712,17

T_io 10,60 10,48 10,44 10,08

T_clear 18692,83 18692,49 18692,67 18692,62

T_total 18703,44 18702,97 18703,11 18702,71

Sp 4,21

Ep 1,05

proc. 2x3 1 2 3 4 5 6
T_seq 78781,76

T_comp 10648,25 10795,54 10935,86 11575,09 10391,54 10774,10

T_comm 3080,12 2932,56 2792,37 2153,11 3336,82 2954,11

T_io 11,59 11,29 11,23 11,23 11,24 11,23

T_clear 13728,37 13728,10 13728,23 13728,20 13728,37 13728,21

T_total 13739,96 13739,39 13739,46 13739,42 13739,61 13739,45

Sp 5,74

Ep 0,96

SKIR
ON

107

proc. 2x4 1 2 3 4 5 6 7 8
T_seq 78781,76

T_comp 8087,34 8164,04 8235,20 8694,99 8016,12 8471,75 7808,17 8137,91

T_comm 3113,40 3036,49 2965,43 2505,62 3184,62 2728,87 3392,40 3062,87

T_io 15,18 12,18 13,40 13,21 12,66 13,46 14,35 11,75

T_clear 11200,73 11212,71 11214,03 11213,81 11213,41 11214,07 11214,92 11212,52

T_total 11215,92 11212,71 11214,03 11213,81 11213,41 11214,07 11214,92 11212,52

Sp 7,02

Ep 0,88

Speedup

4.21

5.74

7.02

0.00
1.00

2.00
3.00
4.00
5.00

6.00
7.00

8.00

2x2 2x3 2x4

S
p

Efficiency

1.05

0.96

0.88

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

2x2 2x3 2x4

E
p

SKIR
ON

108

Machine PARSYTEC CC / PARIX

Optimization level O3 TLMOD 10,00

DLMD, DPHD 0.25, 0.25 TPHOD 40,00

Hours 48 WBD -30,00

IM X JM X LM 121 x161 x32 SBD -20,00

of iterations 1920 Timestep 90 sec

Total Time

3h 7m
3h 49m

5h 12m

22h 53m

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 4 6 8

Processors

S
ec

on
ds

SKIR
ON

109

References

Boukas L.A., Mimikou N.Th., Missirlis N.M., 1997: A Distributed

Implementation of the Numerical Weather Prediction Eta Model. Presented at

the IASTED International Conference on Parallel and Distributed Systems,

Euro PDS’97, June 9-11, Barcelona, Spain and appeared in the Proc. of the

IASTED Conference on Parallel and Distributed Computing and Networks,

IASTED/Acta Press, 301-304 (also accepted, after selection, to be published in

the IASTED Journal for Parallel and Distributed Systems).

Convex Computer Corporation, 1995: MPI: A Message-Passing Interface

Standard. Message Passing Interface Forum.

Dongarra J., Geist G., Manchek R., Sunderam V., 1993: Integrated PVM

Framework Supports Heterogeneous Network Computing. ORNL.

Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R., Sunderam V.,

1994: PVM: Parallel Virtual Machine. A user’s Guide and Tutorial for

Networked Parallel Computing. Scientific and Engineering Computation

Series, Massachusetts Institute of Technology.

Geist A., Beguelin A., Dongarra J., Jiang W., Manchek R., Sunderam V.,

1994: PVM3 User’s guide and Reference manual, Engineering Physics and

Mathematics Division, Mathematical Sciences Section, ORNL/TM-12187.

Genias Software GmbH, 1996: PowerPVM/EPX: Parallel Virtual Machine for

Parsytec CC Systems under EPX/AIX.

Gropp W., Doss N, Skjellum A., 1996: MPICH Model MPI Implementation

Reference Manual.

Henderson T., Baillie C., Benjamin S., Govett M., Hart L., Marroquin A.,

Rodriguez B., 1995: Progress Toward Demonstrating Operational Capability

of Massively Parallel Processors at the Forecast Systems Laboratory, in

SKIR
ON

110

Coming of Age. Proc. of the sixth ECMWF Workshop on the use of Parallel

Processors in Meteorology, World Scientific.

Hewlett-Packard Company, 1996: Convex PVM/GSM User’s Guide for

Exemplar Systems. Convex Technology Center, Order No. DSW-501, Third

Edition.

Hewlett-Packard Company, 1996: Exemplar Programming Guide. Convex

Technology Center, Order No. DSW-067, Third Edition.

Hewlett-Packard Company, 1996: Exemplar SPP1600-Series Architecture.

Convex Technology Center, Order No. DHW-014.

Hewlett-Packard Company, 1996: MPICH User’s Guide for Exemplar

Systems. Convex Technology Center, Order No. DSW-493, Second Edition.

Janjic Z.I., 1979: Forward-backward scheme modified to prevent two-grid-

interval noise and its application in sigma coordinate models. Contrib. Atmos.

Phys., 52, 69-84.

Janjic Z.I., 1984: Non-linear advection schemes and energy cascade on semi-

staggered grids. Mon. Wea. Rev., 112, 1234-1245.

Janjic Z.I., 1990: The step-mountain coordinate: physical package. Monthly

Weather Review, 118, 1429-1443.

Janjic Z.I., 1994: The Step-mountain Eta Coordinate Model: Further

Developments of the Convection Viscous Sublayer and Turbulence Closure

Schemes. Monthly Weather Review, 1-2, 927-945.

Janjic Z.I., and Mesinger F., 1984: Finite-difference methods for the shallow

water equations on various horizontal grids. Numerical Methods for Weather

Prediction, Seminar 1983, ECMWF, Reading, U.K, 1, 29-101.

SKIR
ON

111

Kallos G., 1997: The Regional Weather Forecasting System SKIRON: A

General Overview, Proc. of the Symposium on Regional Weather Prediction

on Parallel Computer Environments, Athens, Greece.

Kallos G., Nickovic S., Jovic D., Kakaliagou O., Papadopoulos A., Missirlis

N., Boukas L. and Mimikou N., 1997: The Eta Model Operational

Forecasting System and its Parallel Implementation. 1st Workshop on Large-

Scale Scientific Computations, Varna, Bulgaria.

Mesinger F., 1973: A method for construction of second-order accuracy

difference schemes permitting no false two-grid-interval wave in the height

field. Tellus, 25, 444-458.

Mesinger F., 1976: An economical explicit scheme which inherently prevents

the false two-grid-interval wave in the forecast fields. Proc. Symp. on

Difference and Spectral Methods for Atmosphere and Ocean Dynamic

Problems, Novosibirsk, 17-22 September 1973, Acad. Sci., Novosibirsk, Part

II , 18-34.

Mesinger F., 1984: A blocking technique for representation of mountains in

atmospheric models. Rivista di Meteorologia Aeronautica, 44, No. 1-4, 195-

202.

Mesinger F., 1997: Forward-backward scheme, and its use in a limited area

model. Contrib. Atmos. Phys., 50, 200-210.

Mesinger F., and Arakawa A., 1976: Numerical methods used in atmospheric

models. GARP Publication Series, 1, No. 17, WMO-ICSU Joint Organizing

Committee, Geneva.

Mesinger F., Janjic Z.I., Nickovic S., Gavrilov D. and Deaven D.G., 1988:

The step-mountain coordinate: Model description and performance for cases

SKIR
ON

112

of Alpine lee cyclogenesis and for a case of an Appalachian redevelopment.

Mon. Wea. Rev., 116, 1493-1518.

Ortega J.M., 1988: Introduction to Parallel and Vector Solution of Linear

Systems, Plenum Press.

Ritchie H., Temperton C., Simmons A., Hortal M., Davies D. and Hamrud

M., 1995: Implementation of the semi-Lagrangian method in a high resolution

of the ECMWF forecast model. Monthly Weather Review, 123, 489-514.

Sunderam V., Geist G., Dongarra J. & Manchek R.: “The PVM Concurrent

Computing System: Evolution, Experiences and Trends”, ORNL.

